skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Raposa, Kenneth B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thin layer sediment placement (TLP) is used to build elevation in marshes, counteracting effects of subsidence and sea level rise. However, TLP success may vary due to plant stress associated with reductions in nutrient availability and hydrologic flushing or through the creation of acid sulfate soils. This study examined the influence of sediment grain size and soil amendments on plant growth, soil and porewater characteristics, and greenhouse gas exchange for three key U.S. salt marsh plants:Spartina alterniflora(synonymSporobolus alterniflorus),Spartina patens(synonymSporobolus pumilus), andSalicornia pacifica.We found that bioavailable nitrogen concentrations (measured as extractable NH4+‐N) and porewater pH and salinity were inversely related to grain size, while soil redox was more reducing in finer sediments. This suggests that utilizing finer sediments in TLP projects will result in a more reduced environment with higher nutrient availability, while larger grain sized sediments will be better flushed and oxygenated. We further found that grain size had a significant effect on vegetation biomass allocation and rates of gas exchange, although these effects were species‐specific. We found that soil amendments (biochar and compost) did not subsidize plant growth but were associated with increases in soil respiration and methane emissions. Biochar amendments were additionally ineffective in ameliorating acid sulfate conditions. This study uncovers complex interactions between sediment type and vegetation, emphasizing the limitations of soil amendments. The findings aid restoration project managers in making informed decisions regarding sediment type, target vegetation, and soil amendments for successful TLP projects. 
    more » « less
  2. Comparing marsh elevation change across four continents provides an explanation for variable marsh responses to sea-level rise. 
    more » « less